
Making Decisions at Data Plane Speeds

Srinivas Narayana
Rutgers University, New Brunswick, NJ, USA

ABSTRACT
Feedback control loops to implement self-driving networks
constitute data collection to sense the network, and control
algorithms to make decisions driving the network. High-
quality data is necessary for smart decisions. Yet, high-
quality data is hard to obtain from the network data plane,
due to insufficient visibility and large data volumes stem-
ming from high packet rates. This paper distills principles
to collect high-quality data arising from our own research ex-
perience: (i) filter and aggregate data as close to the source
as possible; (ii) identify broad families of statistics that are
measurable with bounded inaccuracy; (iii) don’t assume low-
level data plane software is easy to instrument, but instead
(iv) apportion software flexibility by the time scales of the
computation; and (v) prefer in-band approaches where pos-
sible for timely and efficient reactivity. We call the com-
munity to act upon these principles to leverage emerging
opportunities using safely-extensible network stacks.

1. INTRODUCTION
Feedback control is an integral part of self-driving sys-

tems. Networks have conventionally incorporated feedback
control at several layers of the stack to drive themselves.
Classic examples include congestion control, medium ac-
cess control, and IP traffic engineering. Feedback control
includes two components: data collection to sense the net-
work in the data plane, and control algorithms either in the
data or the control plane, to drive the network based on the
data that was collected.

Regardless of the smartness of decision-making algorithms,
bad data can lead to poor decisions. Hence, it is paramount
to have access to high-quality data from the data plane.
However, there are several reasons why obtaining good data
is challenging. To make our discussion concrete, we focus on
scenarios in data center networks for the rest of this paper.

Why is it hard to collect high-quality data?
(1) Insufficient visibility: Designing feedback control to re-
spond to anomalies in performance requires access to fine-
grained, low-level network performance data directly mea-
sured at the bottlenecks. Examples include determining the
queue lengths at routers and servers and the contributions
of individual connections to those hotspots. However, such
raw performance signals are often hard to measure in the
data plane, because deployed hardware and software are

Self-Driving Networks Workshop 2023 Orlando, Florida
Copyright is held by author/owner(s).

simply incapable of the introspection required for such ob-
servations. The emergence of In-Band Network Telemetry
on programmable dataplanes alleviates these problems to
some extent, but it does not solve the visibility problem,
especially for application-level metrics (§2.1).
(2) Large data volumes. When raw signals (e.g., queue sizes)
are indeed available on a packet by packet basis, the speed
at which such signals are generated poses a significant chal-
lenge. Naive attempts to collect such signals “out of band”
using storage systems could double the number of packets
processed by the network. Instead, either the per-packet
signals must be sampled or aggregated to reduce the packet
rate of outgoing signals, or bandwidth that could otherwise
be used for actual network traffic must be repurposed to
carry signals in-band, typically requiring server changes and
new infrastructure. A related difficulty is the design of al-
gorithms that can aggregate per-packet signals into useful
“buckets” cutting across protocol layers, for example, or-
ganizing connections into a histogram of application-level
response latencies. However, network data planes are tra-
ditionally only capable of simple stateful aggregations at a
low protocol level.

2. LESSONS FROM THREE STORIES
Given the difficulties of obtaining high-quality data, how

should one go about designing algorithms to collect network
data for self driving? In this section, we distill some princi-
ples from our own prior research efforts.

2.1 Network Performance Diagnosis
In the Marple system [3], our goal was to diagnose anoma-

lies in network performance. An example of such an anomaly
is microbursts: short-time-scale bursts of packets arising
from traffic sources that display an ON/OFF transmission
pattern, increasing the queueing delays transiently but re-
currently for other latency-sensitive traffic sharing the net-
work. Identifying the perpetrators of such microbursts is
challenging, since they are not major contributors to traffic
on the network and it is unclear which switch and queue in
the network is the site of the microburst. At the time, the
Tofino programmable switches had just introduced the ca-
pability to observe queue sizes as metadata on a per-packet
basis on the switch pipeline. However, this raw data is ar-
riving at the same high speed as the packets on the switch.
Principle 1 [Pushdown]. Filter and aggregate data as
close to the source of the data as possible.

This principle is well known in database systems where the
cost of moving data, say between machines or shuffling rows



(a) HTTP latency. (b) Queue sizes.

Figure 1: Microbursts: (a) A victim HTTP flow
experiencing frequent spikes in response latency. (b)
The time evolution of queueing delays experienced
by packets traversing a queue with a microburst-
perpetrating traffic source.

for database joins, is significant. Reordering database oper-
ations to eliminate irrelevant data earlier in the processing
(e.g., matching on predicates or projecting specific columns)
can significantly improve efficiency. Inspired by this prin-
ciple, we designed primitives that operate directly in the
switch data plane, at line rate, to implement filtering and
aggregation through user-defined keys. For the microburst
scenario, this enables the ability to (i) identify switch queues
and packets which experience large queueing delays at those
queues; and (ii) identify traffic sources (say, aggregated at
the level of transport 5-tuples) that contribute ON/OFF
traffic, by counting the number of bursts of packets sepa-
rated in time by a user-defined threshold. This enables not
only determining where the microburst-perpetrating sources
are active, but also the sources themselves.
Principle 2 [Identify accurate families]. Identify fam-
ilies of statistics measurable with bounded (or zero) inaccu-
racy, and design algorithms customized to those.

The extensive literature on sketching algorithms adheres
to this principle. However, it is much more generally ap-
plicable to data collection even for statistics not typically
captured with sketches, for example, the number of packets
considered out-of-order in a TCP connection. Concurrently
with the Marple work, there existed hardware switching
chips collecting aggregated network performance metrics, for
example average packet latency per 5-tuple flow. However,
when the switch experiences an uptick in the number of
flows (e.g., under a flash crowd or a TCP SYN flood), mem-
ory size limitations would force the switch to evict existing
flows from its memory. The policies used for eviction from
the switch made it unclear how the data that is retained on
the switch compares in accuracy to an ideal lossless measure-
ment. However, the problem goes beyond the shortcomings
of one platform: there was a fundamental lack of under-
standing of how a switch should collect measurements not
easily summarized with limited memory.

In the Marple work, we identified a class of statistics for
which it is possible to obtain accurate data despite the evic-
tion of data from a switch under high memory pressure. The
trick is that we use a slower, but larger and more persistent
memory than a switch, to merge any partial measurements
evicted from a switch with an authoritative measurement
residing in the larger memory. A multi-tier memory archi-
tecture for measurement dovetails well with the existence of
plentiful memory on servers outside of switches. We iden-
tified that statistics s whose per-packet update takes the
functional form s , α(~p) · s + β(~p), where α and β can be

any switch-implementable functions over a recent bounded
history of packets ~p, can be merged with 100% accurate
results. This seemingly simple functional form captures di-
verse statistics, for example the number of out-of-order pack-
ets in each TCP connection.

2.2 Programming Congestion Control
Congestion control is a classic example of self-driving,

with a rich research literature. In our work on the Con-
gestion Control Plane (CCP [2]), we were inspired by the
need to prototype and evaluate a complex congestion control
protocol [1]—one that involves signal processing algorithms
such as Discrete Fourier Transforms—in realistic settings.
Principle 3 [Low-level software changes slowly]. Soft-
ware is not arbitrarily fungible. In particular, data plane
software is not easily changed, for reasons surrounding sta-
bility and performance.

Traditionally, TCP congestion control is implemented us-
ing Linux kernel modules, which limit what developers are
allowed to do. For example, floating point computations are
challenging inside the kernel. Invoking some unsafe numeri-
cal operations could easily crash the kernel (e.g., division by
zero). Further, the emergence of many kernel-bypass soft-
ware platforms necessitated the implementation of the same
protocol logic on diverse software platforms such as Intel’s
Data Plane Development Kit (DPDK) and Google’s QUIC,
each with their own relatively-static programming APIs.

In addition to asking if it is possible to ease development
and experimentation for congestion control within Linux, we
also wondered if it is possible to develop such logic once and
have it run everywhere.
Principle 4 [Flexibility ∝ Available Compute Time].
The flexibility accorded to a software layer should be propor-
tional to the time available to compute at that layer.

It was tempting to introduce a highly-flexible program-
ming API to help develop complex functionality directly
within the Linux kernel and emerging kernel-bypass frame-
works. Specifically, the API could allow the maintenance
of arbitrary state over which arbitrary computation could
occur. However, high-speed packet processing is highly sen-
sitive to the performance of the memory subsystem. For
context, with 100Gbit Ethernet, it is necessary to admit a
new minimum-sized Ethernet packet approximately every 6
nanoseconds to keep up with the packet arrival rate. In such
contexts, the hit rates at the fastest cache layers are critical
to performance—a single L2 cache miss could consume the
entire time budget available to process a packet and slow
the entire system down. Hence, the size of the memory
maintained across packets must be limited, as should the
compute over that memory. Not all complex functionality
can or should go into the data plane.

In the CCP system, we observed that the nature of con-
gestion control makes it neither necessary nor useful to im-
plement complex congestion control computation for each
packet in the data plane. Instead, the natural computa-
tional time scale for congestion control is the round-trip
time (RTT) of the connection, which is much longer than
the time to admit a new packet. Our design choice was to
enable developers to write flexible yet simple fold functions
in the data plane to maintain only the summaries of per-
packet signals for each connection. These summaries would
be relayed once every RTT to a much more flexible control
plane component running in user space. The data plane



and the control plane components have asymmetric flexibil-
ity that is proportional to the natural time scales over which
computations occur in those components.

2.3 Server Load Balancing
In large-scale Internet services, it is standard practice to

implement a layer of server load balancing to distribute the
incoming workload of client requests across a pool of servers
offering the service. The oft-stated goal of load balancing is
to spread load, preventing hotspots or failures on any one
server from impacting client requests. In our ongoing work
on server load balancing [4], we ask whether load balancing
could be used proactively to improve service performance, by
redirecting more requests to the better-performing servers
in the pool. Existing solutions that use server performance
implement an agent-based model, where a software agent on
the server (running either as a daemon or as a part of a li-
brary incorporated into the application) relays feedback on
load and queue occupancies to the load balancer. Such ex-
plicit feedback is crucial since, in many deployments, the
responses to clients from the servers skip the load balancer
on the return path. This idea, known as direct server re-
turn (DSR), significantly reduces the workload on the load
balancer relative to processing both requests and responses.

With the advent of microservices, serverless, and nanoscale
computing, there is now a move towards increasingly-finer
granularity of computing per request. Shrinking compute
times significantly hurt the usability of agent-based feed-
back. First, request processing becomes highly vulnerable
to variability within the system, for example due to process
scheduling. Second, server agents completely miss network
delays. As the per-request compute time approaches the
client connection’s RTT, the network delay contributes half
of the total client-visible response latency.
Principle 5 [In-Band Feedback Control]. To design
highly-reactive systems, avoid staleness and big data prob-
lems through in-band feedback control.

Client LB Server

request

triggered packet

response 
not visible
at LB

Relevant data must be
made available as quickly
and as accurately as possi-
ble at the point where self-
driving decisions are made.
In performance-aware server
load balancing, one relevant
piece of data is an estimate of the up-to-date response la-
tency offered by each server. Rather than siphoning data
from server agents to load balancers through an out-of-band
stream, or through a centralized data collection system, it
is appealing if load balancers can measure the response la-
tencies directly. However, the load balancer’s visibility into
client traffic is asymmetric: with DSR, the load balancer
only sees the requests and not the responses, making it chal-
lenging to measure response latencies by correlating them
with the requests.

Our key insight is that it is possible to substitute the
measurement of the delay between request and response by
the delay between the request and a packet that a client
transmits due to the response—a packet we call a causally-
triggered transmission. There are many examples of causally-
triggered transmissions, most commonly TCP acknowledg-
ments. We show that such transmissions can be detected
while only observing requests but not responses [4].

3. A CALL TO ACTION
We believe there are significant opportunities ahead to

design novel self-driving networked systems, by leveraging
emerging safely-extensible data plane software in the net-
work stack. Concretely:
1. Verified kernel extensions (eBPF) allow user-developed

code to be attached with safety guarantees to specific
“hooks” (function calls or execution sites) in the Linux
kernel. Examples of hooks include the net device driver,
packet scheduler, congestion control, and system calls.
Safety in the eBPF context means that programs have
a bounded running time, contain only instructions that
do not crash (e.g., no division by zero), and all memory
accesses are within safe bounds permitted by the kernel.

2. Service proxies (e.g., Envoy, Linkerd) are a new soft-
ware layer in the container networking stack, refactor-
ing common communication-related capabilities needed
in containerized applications into a reusable component.
For example, service proxies implement load balancing
policy and failure detection and recovery logic common
to multiple applications. Some service proxies such as
Envoy are safely extensible at run time, including We-
bAssembly (WASM) sandboxes.

These extensible software layers enable the design of novel
algorithms for data collection and feedback control oper-
ating directly in the packet-processing software path, with
well-designed channels to communicate out-of-band with a
flexible control plane. For example, one could incorporate
application-specific customizations for congestion control,
packet scheduling, or high-speed packet forwarding. Exten-
sible data plane software is naturally amenable to applying
principled data collection and feedback control techniques
(§2) that overcome the fundamental challenges of data col-
lection (§1). We believe that the prospects of designing self-
driving networks have never before been as bright.

However, to make those prospects viable, the community
must address wide-ranging challenges to enable the effective
use of these emerging extensible network layers.
(1) Designing algorithms under safety constraints: Any pro-
gram run within an extensible network layer must be ‘safe’—
a term whose definition depends on the context (e.g., which
kernel version and which hook are we extending?), and is
evolving. This brings up questions like: What is the scope
of algorithms that can be implemented safely within extensi-
ble network layers? What programming abstractions could
make it easy to design such algorithms?
(2) Performance: Achieving high performance within exten-
sible software layers is crucial since these are on the critical
path of packet processing. How should the performance of
an algorithm be optimized while retaining its safety guaran-
tees? How should we design optimizing compilers? Is there
scope for workload-driven optimizations?

We call upon the community to act on these challenges to
help realize novel self-driving networked systems.

4. REFERENCES
[1] Prateesh Goyal et al. Elasticity detection: A building block

for internet congestion control. In SIGCOMM, 2022.
[2] Akshay Narayan et al. Restructuring endpoint congestion

control. In SIGCOMM, 2018.
[3] Srinivas Narayana et al. Language-directed hardware design

for network performance monitoring. In SIGCOMM, 2017.
[4] Bhavana Vannarth Shobhana et al. Load balancers need

in-band feedback control. In ACM HotNets, 2022.


	Introduction
	Lessons from Three Stories
	Network Performance Diagnosis
	Programming Congestion Control
	Server Load Balancing

	A Call to Action
	References

