
Collecting Data for “Beyond F1 Scores”?

Data

Training Evaluation
Preprocessing +

Model selection
Deployment

Explain Analyze

???

Data-collection intents

Platforms &

Data Generators

What do we need to

make the data better?

Existing Data Collection Efforts

Key (problematic) attributes

• Fragmented

Designed for specific learning problems and network

environments

• Monolithic

Lack modularity, no clear separation between intents and

mechanisms

• One-off

Not suited for iterative data collection

A New Data-Collection Platform – netUnicorn

• Fragmented → Unified (any problem & any platform)

• Monolithic → Modular (Tasks, Pipelines, Experiments)

• One-off → Iterative (Easy reproducibility)

Learning

Problems

Platform

Physical

Infrastructure

Network

Environment

Key Disaggregations

• Stakeholders

– Experimenters (intents) vs. Developers (mechanisms)

• Infrastructures

– Connectors: easy modular way to add infrastructures

– Nodes & NodePools: abstract way to represent targets

• Programming Abstractions

– Developers:

• Tasks, TaskDispatchers, Pipelines

– Experimenters:

• Nodes, Experiments

• netUnicorn

– Users

– Core Services

– Executors

Illustrative Example – HTTP Bruteforce

• Learning problem:

DDoS flows identification from network traffic (PCAPs)

Observations

• All nodes sending benign traffic have the same TTL

• Model learns a shortcut – generalization issues

Data: CIC-IDS-2017 Dataset

Model: Random Forest

F1-score: 0.99

TTL < 63

classes = [0.84, 0.16]

...

classes = [0.83, 0.0]

...

classes = [0.01, 0.16]

HTTP Bruteforce – implementation efforts

PINOT infrastructure

• Raspberry Pi devices

over the whole campus

• Traffic mirroring @

border gateway

• 80 lines of code in total

Multi-cloud infrastructure

• VMs and containers in

different clouds

• Extra 5 (!) lines of code

Fixing the dataset – step 1

• “Swapping” of nodes pools to remove TTL issue

– + adding multiple clouds

– 10 lines of code

• Recollected the data, explored with Trustee

– New shortcut: Bwd Win Init Bytes

– Backward TCP Window – how many bytes server

can accept (indicator of heavy server load)

Fixing the dataset – step 2

• Introduced more benign traffic & slower bruteforce

– +5 lines of code (w/o tasks implementation)

• Recollected the data, explored with Trustee

– Starts using valid features (small forward packet

size & small packet length variance)

– Shortcuts are not found (but possible)

Results & Other examples

• From simple static data collection via iterations

to better datasets and generalizable models

• Low efforts to implement iterations and usage of

multiple infrastructures

• Continuation examples:

– Explore differences in bruteforce data between

different infrastructures

– Explore the resulting dataset more to verify lack of

problems (and possibly iterate more)

netUnicorn’s iterative data collection helps developing

ML models with better chance of being generalizable

Takeaways

• Data collection efforts should be:

– Iteratively built to eliminate biases

– Open, easy to reproduce, share, and implement

– Adaptable to different infrastructures

• netUnicorn – modular platform for data collection

– Wide range of learning problems

• Speedtests, YouTube/Vimeo/Twitch QoE, Wi-Fi

measurements, video identification,

network attacks identifications, …

– Wide range of supported infrastructures

• PINOT, Mininet, AWS, MS Azure,

 Kubernetes, SaltStack, SSH, …

https://netunicorn.cs.ucsb.edurbeltiukov@ucsb.edu

	Slide 1: Collecting Data for “Beyond F1 Scores”?
	Slide 2: Existing Data Collection Efforts
	Slide 3: A New Data-Collection Platform – netUnicorn
	Slide 4: Key Disaggregations
	Slide 5: Illustrative Example – HTTP Bruteforce
	Slide 6: HTTP Bruteforce – implementation efforts
	Slide 7: Fixing the dataset – step 1
	Slide 8: Fixing the dataset – step 2
	Slide 9: Results & Other examples
	Slide 10: Takeaways

