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* Deep Reinforcement Learning (DRL) offers high performance in
increasingly more domains

* However, DRL lacks wide-scale deployment because operators
cannot

e Understand the blackbox neural network

The Need for
Explainability

* Debug the controller when it misbehaves

 Adjust to fix problems



Reinforcement Learning: ABR Perspective
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Reinforcement Learning: ABR Perspective
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External Conditions
Throughput on WAN connection

e DRL network controllers are

deployed in highly variable
network environments
* E.g., WAN
e Cannot be faithfully modeled yet
* During training

* Replayed as external conditions by
a dataset of traces

e At deploymenttm

e Future is unknown




Prior Explainers for DRL Network Controllers

* Inputs
* A black-box controller

* Procedure

1. Sample states from the training
environment

2. Get actions for the states

3. Train an explainable model using all the
state-action pairs

* Decision Tree [Metis (SIGCOMM ‘20),
Trustee (CCS 22)]




The Need for Future Based Explanations

Feature Based

+
+

|dentify key features
Simplify the model
(e.g. decision trees)

Do not capture time-dependent
nature of DRL

Do not give insights into impact
of actions

Future Based

+
+

Reveal future impact of actions
Allow contrasting actions and
states

Enable network observability

Cannot simplify the model



Explaining the future: What can we use?
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Decomposed Future Rewards as Explanations
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Decomposed Future Returns as Explanations
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Decomposed Future Returns as Explanations

Ag;f_‘t * We do not yet know how to model
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CrystalBox
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Use Case 1: Network Observability

* Controllers experience a wide
variety of network conditions

* Alerting for future performance
drops before happen is
Important

e Future-based explanations can
help
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Use Case 2: Guided Reward Design

* Fine tuning reward weights is
tedious and resource inefficient

* Future-based explanations can o Dominant Return Component
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* For example, keeping
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Use Case 3: Cross-State Explainability
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Open Questions

e Using future states as
explanations

* Online safety assurance

 Combining Feature + Future
based explainers
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Thank You
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