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ML for the Win?
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- These ML-based algorithms do very well when their training
environment is faithful to the deployed environment

- Real-world adaptation, however, has been stunted due to bad
generalization



Example: Adaptive
Video Streaming (ABR)

Video Client Request: Video Server

next video chunk at bitrate r chunk1 chunk 2

-
=
Response: -
video content
Each video split into chunks - The ABR algorithm needs to

Each stored in different choose the next bitrate r

discrete bitrates - Undershoot - bad resolution
- e.g. 240P, 480P, 720P (HD)... - Overshoot - suffer rebuffering



Example: Adaptive Video Streaming

ML agent trained on a dataset from Belgium

- BB - a heuristic solution
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- Random - an algorithm which
chooses the bitrate randomly
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» Pensieve - an ML-based
algorithm
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The ML agent does not generalize well, and may lead to

performance worse than random!

*Taken from: Noga H. Rotman, Michael Schapira, and Aviv Tamar. "Online safety assurance for learning-augmented systems." In Proceedings of the 19th ACM Workshop on
Hot Topics in Networks, pp. 88-95. 2020.



Deployment Challenges

Machine crashes, routing changes...

? ?f . Communication networks can be very dynamic

Training data cannot encompass all possible scenarios
Environments are too diverse

?
’ ! ML agents are impeossible very hard for humans to understand

Essentially a “black box”



Approach #2

Approach #1

Approach #3

Key insight:
The following approaches are
complimentary, or orthogonal, and

therefore can be used in tandem to
help advance real-world deployment



Approach #1: Improvement via Training
Leveraging existing data, Improving the training data
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Continuous re-training using real-world
deployment data

Winner of the NSDI Community Award

Focused training on the most
challenging environments




Approach #2: Pre-Deployment Analysis

Explainability of models, formally veritying the neural network
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Translating the neural network into a
decision tree or hypergraphs

Could use insights for retraining

A mathematical approach for reasoning
about a neural network’s behavior

Provides provably guarantee of specified
requirements



Approach #3: Online Assurances

What can we do while the agent is running?

Recently, deep learning has been successfully applied to a variety
of networking problems. A fundamental challenge is that when the
operational environment for a learning-augmented system differs

formed decisions, leading to bad performance. We argue that safely

in real-time, whether system behavior is coherent, for the purpose
£ defaylti ble henristic sehen this i We term

from its training environment, such systems often make badly in-

deploying learning-driven systems requires being able to determine,
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ABSTRACT for such a mismatch is the standard practice of training on sim-

ulated/emulated environments [20, 27], which fail to capture the
intricacies of real-world networks [61]. However, even if training
occurs in situ on real data, as advocated in [61], the operational en-
vironment encountered after training might still greatly differ from
the training environment due to variability in network conditions
not adequately covered by the finite training data, or the introduc-
tion of new factors such as routing changes, network failures, the
addition/removal of traffic sources, etc.

~ Bulilding Into the system the means to
detect, in real-time, when the agent
encounters scenarios it was not
trained for

- Allows switching to a reasonable,
default non-learning policy while the
agent adapts to the new environment



Conclusion

- Making self-driving networks deployable I1s a complex,
iterative process

 We need a lot of hands on deck!

Thank You!




