Tackling Deployability Challenges in ML-Powered Networks

Noga H. Rotman
The Hebrew University of Jerusalem

1 Introduction

Following the success of Machine Learning (ML) in various
fields such as natural language processing, computer vision
and computational biology, there has been a growing interest
in incorporating ML into the networking domain [5, 6, 14, 4,
9]. Today, ML-based algorithms for prominent networking
problems such as congestion control, resource management
and routing, perform very well when their training envi-
ronment is faithful to the operational environment, achiev-
ing state-of-the-art results when compared to traditional al-
gorithms. However, the adaptation of these algorithms to
function in production environments has not been straight-
forward, as real-world networks may differ greatly from the
data used for training, leading to a drop in performance
when unleashed into the wild.

This paper provides an overview of the problems impeding
the successful deployment of ML-powered networks. It cat-
egorizes proposed solutions into three types, based on the
main concern they address. Notably, each category takes
place at different stage of the lifecycle of an ML-powered
network: in-training, pre-deployment, and online, allowing
to employ all three in tandem. We propose a holistic ap-
proach to tackling the challenges facing a successful deploy-
ment, by intervening at all three stages, and integrating the
observations obtained at each stage to improve the others.

1.1 Example: ML-based algorithm in the wild

ML-based networking protocols have been very successful

when their training environment and test environment match.

What happens when this is not the case?

To demonstrate the impact to performance that may oc-
cur when the training environment of an ML-powered al-
gorithm differs from the deployed environment, we consider
a deep learning solution to the timely problem of adaptive
video streaming (ABR) in HTTP-based video streaming.

chunk 1 chunk 2
1080P

Video Client Request:

next video chunk at
bitrate r

r

Response: Video Server

video content

Figure 1: ABR problem overview

Copyright is held by author/owner(s).

In ABR (see Figure 1), a client interacts with a video
server. Videos are stored on the server as chunks of (roughly)
the same length, each chunk available in different bitrates,
corresponding to its quality. When the client is watching
a video, they need to request the next chunk at a specific
bitrate r. The ABR algorithm, running at the client, is re-
sponsible for choosing which bitrate r» should be requested
from the server. The algorithm must walk a thin line be-
tween selecting a lower resolution that may not be satisfac-
tory to the client, and choosing a higher one that may force
the client to wait for content while streaming (an event also
known as rebuffering), as both effects are known to play an
instrumental role in user engagement [1].

0 — —

-2000 I

4000

-6000

-8000
-10000

== BB

-12000 Random

mmm Pensieve

Average Reward

14000

Norway Exp(1) Gamma(1,2) Gamma(2,2) Log(4,0.5)

Figure 2: Average reward of an ML-based algo-
rithm, Pensieve, trained on a dataset collected in
Belgium, compared to that of BB, a non-learning
algorithm, and a random algorithm. When tested
on a dataset collected in Norway and two synthetic
datasets, the Pensieve agent performs worse than
the random algorithm. Figure 2a from [10].

Pensieve [6] applies Reinforcement Learning (RL) [11] to
ABR. In [10], we trained Pensieve agents on different datasets,
both real-world and synthetic. These agents performed well
when the test and training environments were drawn from
the same distribution. We then tested their performance
when the training and test environments differs. Figure 2
contrasts the performance of a Pensieve agent trained on a
dataset collected in Belgium, against two algorithms: Buffer-
Based (BB) [3], a manually-crafted and widely deployed pro-
tocol, and an algorithm which chooses the next bitrate ran-
domly. In all cases, the performance of BB is better than
the one of exhibited by the Pensieve agent. Furthermore,
in some cases, such as a test set collected in Norway, the
Pensieve agent performed worse than the random algorithm.
These results raise concerns when considering deploying ML-
powered networks.



1.2 The causes for the impact to performance
in the real world

There are multiple factors contributing to the drop in perfor-
mance of an ML-based algorithm in a networking production
environment.

First, bad generalization is a known trait of several ML
methodologies prevalent in networking, such as RL.

Second, one must consider the usage and evaluation of
these algorithms. Typically, when a non-learning algorithm
fails, the cause is traceable, as the algorithm’s logic is clear.
It is then possible to adjust it to better handle the net-
working conditions causing the failure. On the other hand,
when an ML-based algorithm breaks down, the reason is ob-
scured, as neural networks are painfully difficult for humans
to understand. Because of this, not only are we unable to
effectively investigate the cause of failures, but we are also
unable to modify the algorithm to address them.

Third, modern communication systems are architecturally
complex and extremely dynamic. Encompassing all possible
scenarios in a training set is simply not possible, as deploy-
ment environments are too diverse.

2 Tackling deployability challenges

In this section we classify proposed solutions for mitigating
the performance degradation caused by bad generalization
into three categories, based on the main concern they tar-
get (see Section 1.2), and provides a short overview of each.
Further discussion of these categories can be found in Sec-
tion 3.

In-training enhancements target the components respon-
sible for the initial creation of an ML-based algorithm: the
data used for training, the actual training process, or both.
Successfully adapting ML methodologies to the networking
domain is an arduous task, as the problems these techniques
were originally created for and tested on differ greatly from
networking problems.

Pre-deployment analysis aims to eliminate potential prob-
lems prior to deployment by providing insights as to the ac-
tions taken by a trained ML-based networking protocol, and
the reasons leading to them.

Online assurances attempts to intervene during deploy-
ment, in order to avoid a sudden drop in performance when
network conditions change.

2.1 In-training enhancements

Puffer [13] is an online service streaming live U.S. TV sta-
tions. Born as a research project, it serves as a playground
for evaluating and comparing various ABR protocols. The
authors proposed a new ML-based algorithm to the ABR
problem, where the learning agent is trained daily in-situ,
using data obtained from its deployment environment during
the last fourteen days. Puffer won the NSDI’20 community
award, as the data collected is made available online.
Another notable example is Genet [12], which targets the
generalization problem in RL-based networking protocols by
focusing the training procedure on the most challenging en-
vironments, instead of choosing them uniformly at random.
To do so, the authors use Curriculum Learning [8]. While
this methodology has proved useful in other domains, apply-

ing it in a networking context is nontrivial, as it is unclear
how to measure the “difficulty “ of a network environment.

2.2 Pre-deployment analysis

In [7], the authors introduce two categories of ML-powered
networking systems: local and global. Their framework,
Metis, translates the trained neural network employed by
a local or global system into either a decision tree or hyper-
graphs. Both of these representations are much easier for
humans to understand and evaluate. Interestingly, this ap-
proach advocates for the deployment of the representation
in place of the original ML-based algorithm, thus allowing
to modify the algorithm running in production directly. It
is worth noting that there are ML-powered networking sys-
tems that cannot be addressed using this formalism.

Formal Verification is a mathematical approach for rea-
soning about a neural network’s behavior. It provides prov-
able guarantees of specified requirements; for example, for
ABR, one can ascertain that when the conditions of the
network do not allow for high average quality, the algorithm
opts for a lower resolution over constantly rebuffering. This
approach is used in [2] to evaluate three proposed ML-based
networking protocols. A known disadvantage of this ap-
proach is that it is hard to scale to larger neural networks.
In networking, however, most ML-based algorithms involve
relatively small neural networks, making this approach fea-
sible for various ML-based networking algorithms.

2.3 Online assurances

The last technique aims to rein in the possible costs of
bad generalization in a production environment by replac-
ing the ML-based algorithm with a “safer“ option, when
the decisions of the former are incoherent/uncertain. The
motivation for this methodology is simple: in communica-
tion networks, there are many hand-crafted protocols that
have been deployed in various networks for years, some for
decades. While these algorithms may not enjoy the high per-
formance achieved by ML-based algorithms, they were de-
signed to withstand disastrous circumstances, and are thor-
oughly tested “in battle“. Therefore, if we were able to
successfully identify online when an ML-based algorithm is
making incoherent decisions, we would be able to provide a
kind of a “safety net“, by enabling to switch to a “safer*
option once such a need arises. Further incentive can be
found in Figure 2, demonstrating that on test sets in which
the Pensieve agent fails to generalize, BB could potentially
be used to improve the overall performance.

Realizing this technique requires addressing several major
challenges. First, although the detection of uncertainty in
the behavior of an ML-based algorithm has been explored in
different contexts, no standard method has yet to emerge.
Second, translating an uncertainty signal into a measur-
able amount that can be calculated online. Third, forming
heuristics by which to set thresholds on the calculated value,
in order to determine whether the system should switch to
a “safe algorithm.

We presented this concept in [10]. We investigated three
possible signals: uncertainty in the algorithm’s input, un-
certainty in the actions selected, and uncertainty in the al-
gorithm’s evaluation of its future benefit from the chosen
actions. We tested these signals and compared their impact
on Pensieve agents. We have found that two of the tested
signals show promise.



3 Discussion and conclusions

Despite encouraging advances, realizing the promise of ML-
powered networks is still elusive. This paper discussed the
challenges encountered during deployment of these systems,
summarized current techniques, and offered a fresh perspec-
tive of these practices.

Pre-Deployment
Analysis

Step #2

Incorporate failure scenario
into the training procedure

In-Training | «-----------2-0-oa-a- Online
Enhancements Assurances
Step #1 Step #3
Figure 3: Each category takes place at a differ-

ent phase, allowing not only to utlize all three, but
continuously enhancing the algorithm based on its
observable behavior at each step.

A key insight of this paper is that the categories presented
in Section 2 are complimentary, as each occurs at a differ-
ent stage of the ML-powered network pipeline: during the
initial training of the algorithm, pre-deployment, and on-
line. We claim that in order to enable the successful deploy-
ment of ML-powered networks, we must address the prob-
lems at all three stages (see Figure 3). First, in-training
enhancements should be applied, creating a more resilient
algorithm. Then, pre-deployment analysis of the resulting
algorithm should be performed, which may lead to further
enhancements of the training procedure and data. Finally,
the system should be adjusted to provide online assurances,
so that when the algorithm eventually fails in production,
the reasons can be investigated and resolved while avoiding
a critical hit to performance.

This approach essentially calls for a paradigm shift when
considering these algorithms, from a “one shot“ scenario to
an iterative process, in which the algorithm is re-examined,
re-adjusted and re-tested prior to and during deployment.

4 Acknowledgments

Many thanks to the organizers of the ACM SIGMETRICS
’23 Workshop on Measurements for Self-Driving Networks
at Orlando, Florida, on June of 2023, for their invitation,
and to the participants of the workshop, for the engaging
discussion. Special thanks to Dr. Yotam Feldman.

5 References

[1] Florin Dobrian, Vyas Sekar, Asad Awan, Ion Stoica,
Dilip Joseph, Aditya Ganjam, Jibin Zhan, and Hui
Zhang. Understanding the impact of video quality on
user engagement. ACM SIGCOMM computer
communication review, 41(4):362-373, 2011.

[2] Tomer Eliyahu, Yafim Kazak, Guy Katz, and Michael
Schapira. Verifying learning-augmented systems. In

(13]

(14]

Proceedings of the 2021 ACM SIGCOMM 2021
Conference, pages 305—-318, 2021.

Te-Yuan Huang, Ramesh Johari, Nick McKeown,
Matthew Trunnell, and Mark Watson. A buffer-based
approach to rate adaptation: Evidence from a large
video streaming service. In Proceedings of the 201}
ACM conference on SIGCOMM, pages 187-198, 2014.
Nathan Jay, Noga H. Rotman, Brighten Godfrey,
Michael Schapira, and Aviv Tamar. A deep
reinforcement learning perspective on internet
congestion control. In International Conference on
Machine Learning, pages 3050-3059. PMLR, 2019.
Hongzi Mao, Mohammad Alizadeh, Ishai Menache,
and Srikanth Kandula. Resource management with
deep reinforcement learning. In Proceedings of the 15th
ACM workshop on hot topics in networks, pages
50-56, 2016.

Hongzi Mao, Ravi Netravali, and Mohammad
Alizadeh. Neural adaptive video streaming with
pensieve. In Proceedings of the Conference of the ACM
Special Interest Group on Data Communication, pages
197-210, 2017.

Zili Meng, Minhu Wang, Jiasong Bai, Mingwei Xu,
Hongzi Mao, and Hongxin Hu. Interpreting deep
learning-based networking systems. In Proceedings of
the Annual conference of the ACM Special Interest
Group on Data Communication on the applications,
technologies, architectures, and protocols for computer
communication, pages 154-171, 2020.

Sanmit Narvekar, Bei Peng, Matteo Leonetti, Jivko
Sinapov, Matthew E Taylor, and Peter Stone.
Curriculum learning for reinforcement learning
domains: A framework and survey. The Journal of
Machine Learning Research, 21(1):7382-7431, 2020.
Yarin Perry, Felipe Vieira Frujeri, Chaim Hoch,
Srikanth Kandula, Ishai Menache, Michael Schapira,
and Aviv Tamar. DOTE: Rethinking (predictive)

W AN traffic engineering. In 20th USENIX
Symposium on Networked Systems Design and
Implementation (NSDI 23), pages 1557-1581, 2023.
Noga H Rotman, Michael Schapira, and Aviv Tamar.
Online safety assurance for learning-augmented
systems. In Proceedings of the 19th ACM Workshop
on Hot Topics in Networks, pages 8895, 2020.
Richard S Sutton and Andrew G Barto. Reinforcement
learning: An introduction. MIT press, 2018.

Zhengxu Xia, Yajie Zhou, Francis Y Yan, and
Junchen Jiang. Genet: automatic curriculum
generation for learning adaptation in networking. In
Proceedings of the ACM SIGCOMM 2022 Conference,
pages 397-413, 2022.

Francis Y Yan, Hudson Ayers, Chenzhi Zhu, Sadjad
Fouladi, James Hong, Keyi Zhang, Philip Levis, and
Keith Winstein. Learning in situ: a randomized
experiment in video streaming. In 17th USENIX
Symposium on Networked Systems Design and
Implementation (NSDI 20), pages 495-511, 2020.
Francis Y Yan, Jestin Ma, Greg Hill, Deepti
Raghavan, Riad S Wahby, Philip Levis, and Keith
Winstein. Pantheon: the training ground for internet
congestion-control research. Measurement at
http://pantheon. stanford. edu/result/1622, 2018.



	Introduction
	Example: ML-based algorithm in the wild
	The causes for the impact to performance in the real world

	Tackling deployability challenges
	In-training enhancements
	Pre-deployment analysis
	Online assurances

	Discussion and conclusions
	Acknowledgments
	References

