
Designing Traffic Monitoring Systems for Self-Driving
Networks

Chris Misa
University of Oregon

cmisa@cs.uoregon.edu

ABSTRACT
Traffic monitoring is a critical component of self-driving net-
works. In particular, any system that seeks to automatically
manage a network’s operation must first be equipped with
insights about traffic currently flowing through the network.
Typically, dedicated traffic monitoring systems deliver such
insights in the form of traffic features to high-level human
or automated decision makers. Inspired by the exciting ca-
pabilities of programmable dataplanes and the persistent
challenges of network management, the research commu-
nity has focused on improving the flexibility and efficiency
of traffic monitoring systems for a variety of management
tasks. However, a significant gap remains between the traffic
monitoring requirements of practical, deployable self-driving
networks and the capabilities of current state-of-the-art sys-
tems. This short paper provides a brief background of traffic
monitoring systems, discusses how their claims and limita-
tions relate to requirements of self-driving networks, and
proposes several open challenges as exciting starting points
for future research. Addressing these challenges requires
large-scale efforts in traffic monitoring techniques and self-
driving network design, as well as enhanced dialog between
researchers in both domains.

1 Background & Motivation
1.1 Traffic Monitoring Systems
Traffic monitoring refers to the process of observing packets
flowing through the network and computing metrics for a
particular goal. As shown in Figure 1, this involves the net-
work data plane where packets are observed, computation of
the desired traffic metrics (typically involving filtering and
aggregation), and finally the “self-driving” automation sys-
tem where the traffic metrics are used to make decisions
about how to update network forwarding behavior. For ex-
ample, a self-driving network controller might seek to ob-
serve DNS packets, compute total volume of DNS traffic
to particular destinations, then deploy mitigation if traffic
exceeds a volume associated with DDoS attacks [9].

The primary challenge in monitoring network traffic is
dealing with high traffic volumes (e.g., a single switch can
process up to several Tbps). In order to deal with this chal-
lenge, modern traffic monitoring systems leverage hardware
and/or software processing platforms at several points in the
network as shown in Figure 2. For example, DNS packets

Copyright is held by author/owner(s).

Network 
Dataplane

Compute 
metrics

Network 
automation 
system

packets metrics

Figure 1: Traffic monitoring involves observing
packets in the network and computing metrics for
automation systems.

could be selected using TCAM-based match action tables
in programmable switch hardware [4] or using logic imple-
mented in CPU-based virtual switches [12].

Switch NIC vSwitch End-host
Pkt in

Pkt out

CPU programming:
● (+) Lots of memory
● (+) Lots of flexible ops.
● (-) Slow per-packet processing

Hardware programming:
● (+) Fast per-packet processing
● (-) Limited memory
● (-) Limited operations

Figure 2: Processing platforms commonly consid-
ered in network traffic monitoring systems.

Although hardware processors (programmable switches
and NICs) can efficiently process high traffic volumes, they
do so by adopting simpler, constrained programming mod-
els with a limited set of per-packet operations (e.g., lim-
ited read-update-writes per packet) and a small amount of
memory (e.g., O(10MB) SRAM on typical programmable
switches). As a result, state-of-the-art traffic monitoring
systems develop hybrid approaches where as much of the
monitoring computation as possible is offloaded to high-
efficiency hardware processors (e.g., switches) while the rest
is implemented in lower-efficiency CPU-base software. For
example, Sonata [6] develops algorithms for partitioning mon-
itoring computations across switch hardware dataplanes and
CPU-based stream processors.

1.2 Self-Driving Examples
To illustrate how traffic monitoring relates to self-driving
network control systems, we consider two recently proposed
network automation systems.
DDoS defense. Recent proposals [9] develop approaches
to automatically defending against network-based DDoS at-
tacks by combining the data and control plan components
described in Figure 2. The core idea is to install traffic mon-
itoring programs directly into programmable switch hard-
ware, then automatically react based on the collected met-
rics to mitigate attack traffic. Although presented as end-to-
end defense systems, these proposals each leverage generic
traffic monitoring capabilities which could be satisfied by a
single unified monitoring system.



Flow-level offloading. Other proposals [14] seek to im-
prove performance of modern cloud gateway routers by of-
floading processing (e.g., encap-decap, forwarding) to hard-
ware processors with limited memory. The core idea is to
automatically select a few “heavy” flows for offloading to
the hardware processor (e.g., switch, NIC) so that the CPU
handles reduced traffic volume. Again, the traffic monitor-
ing requirements for self-driving flow offloading are generic
(finding the “heaviest” and the “lightest” flows) and could
be implemented by a unified system.

1.3 General Requirements
Based on these examples, we argue that unified traffic moni-
toring systems must meet the follow requirements to support
current and future self-driving networks.
R1: Set of monitored metrics changes at runtime.
Traffic monitoring systems must be able to change what
metrics are computed at runtime on-the-fly. For example,
the flow-offloading controller might need to adjust which
offloaded flows to monitor or the DDoS defense controller
might need to monitor new per-source metrics after detect-
ing an attack (e.g., to identify attack sources).
R2: Must retain resource efficiency for all metrics.
Traffic monitoring systems must be able to maintain consis-
tent accuracy for all metrics computed. For example, the
flow-offloading controller might be able to achieve high per-
formance even when the set of “heavy” flows reported from
the monitoring system is computed approximately using a
smaller amount of memory.
R3: Must remain robust in the face of changing
traffic. Traffic monitoring systems must be able to cope
with changes in resource requirements induced by the nat-
ural changes in traffic composition over time. For example,
per-source metrics required by the DDoS defense controller
might require memory proportional to the actual number of
sources observed which changes dynamically over time.

2 Current Traffic Monitoring Design Patterns
Current state-of-the-art traffic monitoring system propos-
als focus primarily on addressing R2. We consider two key
trends in this area: approximation using sketches and mon-
itoring task definition using query languages.

2.1 Sketches for Efficient Approximation
Sketch-based methods [15] extend the core idea of a hash
table to an approximation method for computing a keyed
sum (i.e., the number of packets or bytes in each flow). A
“sketch” is essentially a hash table which embraces hash
collisions—rather than implementing collision resolution, a
sketch adds multiple semi-independent hash functions. As
more hash functions are added, the probability of hash col-
lision (i.e., all hash functions hashing two different elements
to the same buckets) decreases multiplicatively so that when
properly parameterized and under a few other assumptions,
the error induced by hash collisions can be provably bounded.
The key advantages of sketch-based methods is that their

update algorithm is constant time (O(1)) and that they can
estimate several useful metrics beyond simple keyed sums.
Hash-indexed read, increment, write operations are rela-
tively trivial to implement on modern programmable switch
hardware making sketches an easy first choice for nearly all
switch hardware based traffic monitoring proposals. More-
over, in addition to simple per-flow counting, metrics like

heavy hitters, cardinality, and entropy can also be estimated
from sketch counters [8].

Despite their promise and popularity, several key limita-
tions have hindered the practical application and adoption of
sketch-based methods in realistic traffic monitoring settings.
First, sketches typically require fixing a flow key at com-
pile time making it challenging to address R1 since either
sketches for all possible metrics must be run all the time or
the monitoring program must be recompiled and redeployed
(inducing network down time). Several recent works [7, 17]
tackle this challenge head on, but the effectiveness of the
proposed methods remains untested for self-driving network
applications. Second, the accuracy of sketch-based results is
strongly dependent on the relationship between the number
of counters compiled in the sketch (i.e., the number of rows
in the “hash table”) and the actual number of flows observed
in network traffic. This inherently limits a sketch’s ability
to address R3 since the actual number of flows that must
be tracked in realistic network traffic can change drastically
over time and it is nearly impossible to select an optimal
number of sketch counters a priori.

2.2 Query Languages for Flexibility
Another focus of recent traffic monitoring research is in
developing expressive languages for expressing monitoring
tasks (often referred to as “queries”) which can be auto-
matically compiled into high-throughput platforms like pro-
grammable switch hardware. In particular, a form of map-
reduce language has emerged as a promising design choice
since it enables complex processing pipelines and has a rela-
tively straightforward mapping into the “match-action” model
of modern programmable switch hardware [11, 6].

The key advantage of developing a unified language for ex-
pressing traffic monitoring computations is that it separates
developers of self-driving control systems from the technical
low-level interfaces (e.g., P4 [3]) where these computations
are implemented. For example, the set of benchmark queries
originally proposed in Sonata has been used to demonstrate
performance of several other traffic monitoring systems [19,
10] implying that a self-driving network that uses queries in
the Sonata language could be ported across multiple traffic
monitoring “backends”. Moreover, recent developments [19,
18] have demonstrated how such a language can be mapped
to a more flexible hardware “interpreter” so that queries can
be changed on-the-fly satisfying R1.

Despite the success of these initial efforts, current query
languages are still limited in the types of aggregations they
can express (i.e., R2) as well as their robustness against
changing traffic compositions (i.e., R3). First, aggregation
operations are typically selected from a list of pre-defined
options and typically only support a few options like “sum”,
“count”, and “average”. In particular, specifying aggre-
gations in this manner makes it challenging to implement
more complex pattern-based queries (e.g., as proposed in
NetQRE [16]). Finally, similar to sketch-based methods,
each aggregation expressed in these map-reduce languages
must be mapped to a fixed-size hardware table whereas the
actual number of aggregates (i.e., number of observed keys)
changes dynamically at runtime. For works like Newton [19]
which propose using sketches to implement aggregations,
the implications of error propagation through the query’s
pipeline of operators is unclear and potentially renders final
query results useless.



3 Open Research Challenges
Finally, we summarize two key open research challenges im-
plied by the limitations of prior traffic monitoring systems
and the unique requirements of self-driving networks.

3.1 Role of Traffic Monitoring
As traffic monitoring systems develop new capabilities and
complexities, a key question of where to draw the line be-
tween monitoring and control arises. Consider, the use of
machine-learning (ML) models as a means to automatically
make network control decisions [5, 13, 1]. Without a clear
definition of the role of traffic monitoring, self-driving net-
work efforts risk either over-looking key technical challenges
required to collect features for these models efficiently at
scale or risk duplicating efforts from traffic monitoring re-
search.

3.2 Dynamic Resource Management
To satisfy both R1 and R3, self-driving networks require
that traffic monitoring systems produce consistently accu-
rate results as both the metrics monitored as well as the
traffic composition (e.g., number of flows) changes dynami-
cally over time. Although previous works address these re-
quirements in isolation [19, 10, 2], addressing both require-
ments simultaneously for the wide range of metrics required
remains an open challenge.

4 Conclusion
The brief overview presented here illustrates how network
traffic monitoring is a rich field with a variety of challeng-
ing requirements and open problems as well as its essential
role in the design and implementation of self-driving net-
works. Collaboration between traffic monitoring and auto-
mated control systems research will be critical for develop-
ment of useful, practical, and effective self-driving networks
of the future.

5 References
[1] D. Barradas, N. Santos, L. Rodrigues, S. Signorello, F. M.

Ramos, and A. Madeira. Flowlens: Enabling efficient flow
classification for ml-based network security applications. In
NDSS, 2021.

[2] R. Bhatia, A. Gupta, R. Harrison, D. Lokshtanov, and
W. Willinger. Dynamiq: Planning for dynamics in network
streaming analytics systems. arXiv preprint
arXiv:2106.05420, 2021.

[3] P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McKeown,
J. Rexford, C. Schlesinger, D. Talayco, A. Vahdat,
G. Varghese, et al. P4: Programming protocol-independent
packet processors. ACM SIGCOMM Computer
Communication Review, 44(3):87–95, 2014.

[4] P. Bosshart, G. Gibb, H.-S. Kim, G. Varghese,
N. McKeown, M. Izzard, F. Mujica, and M. Horowitz.
Forwarding metamorphosis: Fast programmable
match-action processing in hardware for SDN. ACM
SIGCOMM Computer Communication Review,
43(4):99–110, 2013.

[5] R. Doriguzzi-Corin, S. Millar, S. Scott-Hayward,
J. Martinez-del Rincon, and D. Siracusa. Lucid: A
practical, lightweight deep learning solution for ddos attack
detection. IEEE Transactions on Network and Service
Management, 17(2):876–889, 2020.

[6] A. Gupta, R. Harrison, M. Canini, N. Feamster, J. Rexford,
and W. Willinger. Sonata: Query-driven streaming network

telemetry. In Proceedings of the 2018 conference of the
ACM special interest group on data communication, pages
357–371, 2018.

[7] Q. Huang, P. P. Lee, and Y. Bao. Sketchlearn: Relieving
user burdens in approximate measurement with automated
statistical inference. In Proceedings of the conference of the
ACM Special Interest Group on Data Communication
(SIGCOMM), pages 576–590, 2018.

[8] Z. Liu, A. Manousis, G. Vorsanger, V. Sekar, and
V. Braverman. One sketch to rule them all: Rethinking
network flow monitoring with univmon. In Proceedings of
the 2016 ACM SIGCOMM Conference, pages 101–114.
ACM, 2016.

[9] Z. Liu, H. Namkung, G. Nikolaidis, J. Lee, C. Kim, X. Jin,
V. Braverman, M. Yu, and V. Sekar. Jaqen: A
high-performance switch-native approach for detecting and
mitigating volumetric ddos attacks with programmable
switches. In 30th USENIX Security Symposium (USENIX
Security 21), 2021.

[10] C. Misa, W. O’Connor, R. Durairajan, R. Rejaie, and
W. Willinger. Dynamic scheduling of approximate
telemetry queries. In 19th USENIX Symposium on
Networked Systems Design and Implementation (NSDI
22), pages 701–717, 2022.

[11] S. Narayana, A. Sivaraman, V. Nathan, P. Goyal, V. Arun,
M. Alizadeh, V. Jeyakumar, and C. Kim.
Language-directed hardware design for network
performance monitoring. In Proceedings of the conference
of the ACM Special Interest Group on Data
Communication (SIGCOMM), pages 85–98, 2017.

[12] B. Pfaff, J. Pettit, T. Koponen, E. Jackson, A. Zhou,
J. Rajahalme, J. Gross, A. Wang, J. Stringer, P. Shelar,
et al. The design and implementation of open vSwitch. In
12th USENIX symposium on networked systems design and
implementation (NSDI 15), pages 117–130, 2015.

[13] T. Swamy, A. Zulfiqar, L. Nardi, M. Shahbaz, and
K. Olukotun. Homunculus: Auto-generating efficient
data-plane ml pipelines for datacenter networks. In
Proceedings of the 28th ACM International Conference on
Architectural Support for Programming Languages and
Operating Systems, Volume 3, pages 329–342, 2023.

[14] Y. Wang, D. Li, Y. Lu, J. Wu, H. Shao, and Y. Wang.
Elixir: A high-performance and low-cost approach to
managing Hardware/Software hybrid flow tables
considering flow burstiness. In 19th USENIX Symposium
on Networked Systems Design and Implementation (NSDI
22), pages 535–550, 2022.

[15] M. Yu, L. Jose, and R. Miao. Software defined traffic
measurement with OpenSketch. In Proceedings of the
USENIX Symposium on Networked Systems Design and
Implementation (NSDI), pages 29–42, 2013.

[16] Y. Yuan, D. Lin, A. Mishra, S. Marwaha, R. Alur, and
B. T. Loo. Quantitative network monitoring with netqre. In
Proceedings of the conference of the ACM special interest
group on data communication, pages 99–112, 2017.

[17] Y. Zhang, Z. Liu, R. Wang, T. Yang, J. Li, R. Miao, P. Liu,
R. Zhang, and J. Jiang. Cocosketch: High-performance
sketch-based measurement over arbitrary partial key query.
In Proceedings of the 2021 ACM SIGCOMM 2021
Conference, pages 207–222, 2021.

[18] H. Zheng, C. Tian, T. Yang, H. Lin, C. Liu, Z. Zhang,
W. Dou, and G. Chen. Flymon: enabling on-the-fly task
reconfiguration for network measurement. In Proceedings of
the ACM SIGCOMM 2022 Conference, pages 486–502,
2022.

[19] Y. Zhou, D. Zhang, K. Gao, C. Sun, J. Cao, Y. Wang,
M. Xu, and J. Wu. Newton: Intent-driven network traffic
monitoring. In Proceedings of the ACM Conference on
emerging Networking EXperiments and Technologies
(CoNEXT), pages 295–308, 2020.


	Background & Motivation
	Traffic Monitoring Systems
	Self-Driving Examples
	General Requirements

	Current Traffic Monitoring Design Patterns
	Sketches for Efficient Approximation
	Query Languages for Flexibility

	Open Research Challenges
	Role of Traffic Monitoring
	Dynamic Resource Management

	Conclusion
	References

