Designing Traffic Monitoring Systems for Self-driving Networks

Chris Misa, PhD Candidate
University of Oregon
2023-06-19
Traffic Monitoring

• Traffic monitoring is **observing** packets in network...

• ...and **computing** metrics for a particular goal.

```
Network Dataplane  packets  Compute metrics  metrics  Network automation system
```
Traffic Monitoring

- Traffic monitoring is **observing** packets in network...
 - Single links: 400G, Switches: 2-3T.
- ...and **computing** metrics for a particular goal.
 - Details for lots of traffic entities (flows).

![Diagram](Network Dataplane) \(\xrightarrow{\text{packets}}\) Compute metrics \(\xrightarrow{\text{metrics}}\) Network automation system
Traffic Monitoring + Systems

- Wide range of options for where to compute.
 - End-host CPU, NIC hardware, Switch hardware, etc.

```
Pkt in
Switch NIC vSwitch End-host
Pkt out
```
Traffic Monitoring +Systems

- Wide range of options for where to compute.
 - End-host CPU, NIC hardware, Switch hardware, etc.

Hardware programming:
- (+) Fast per-packet processing
- (-) Limited memory
- (-) Limited operations

CPU programming:
- (+) Lots of memory
- (+) Lots of flexible ops.
- (-) Slow per-packet processing
Traffic Monitoring + Systems

- Wide range of options for where to **compute**.
 - End-host CPU, NIC hardware, Switch hardware, etc.

Hardware programming:
- (+) Fast per-packet processing
- (-) Limited memory
- (-) Limited operations

CPU programming:
- (+) Lots of memory
- (+) Lots of flexible ops.
- (-) Slow per-packet processing

...most systems are (actually) hardware + CPU hybrid.
Reqs. for Self-Driving Networks

- **R1:** *Set of monitored metrics changes at runtime.*
 - Monitoring is a service for automation.
Reqs. for Self-Driving Networks

• **R1**: Set of monitored metrics changes at runtime.
 – Monitoring is a service for automation.

• **R2**: Resource efficiency for wide range of metrics.
 – Including potentially non-linear feature vectors.
Reqs. for Self-Driving Networks

• **R1:** *Set of monitored metrics changes at runtime.*
 – Monitoring is a service for automation.

• **R2:** *Resource efficiency for wide range of metrics.*
 – Including potentially non-linear feature vectors.

• **R3:** *Remain robust in face of changing traffic.*
 – Changes in traffic cannot impact accuracy of results.
Reqs. for Self-Driving Networks

• **R1:** *Set of monitored metrics changes at runtime.*
 - Monitoring is a service for automation.

• **R2:** *Resource efficiency for wide range of metrics.*
 - Including potentially non-linear feature vectors.

• **R3:** *Remain robust in face of changing traffic.*
 - Changes in traffic cannot impact accuracy of results.

Currently lots of focus on R2, just starting to focus on R1 and R3.
Designs Proposed in Research

- Sketches for efficient approximation.

- “Map-reduce” model for flexible queries.

```
ddos = PacketStream(1)
    .distinct(keys=('ipv4.dstIP', 'ipv4.srcIP'))
    .map(keys=('ipv4.dstIP',), map_values=('count',), func=('eq', 1,))
    .reduce(keys=('ipv4.dstIP',), func=('sum',))
    .filter(filter_vals=('count',), func=('geq', 45))
```

Sonata: Gupta et al., 2018.
Sketches for Efficient Approximation

Pros:
- O(1) update.
- Several metrics can be computed.
 - Heavy hitters, cardinality, entropy, etc.

Cons:
- Embrace hash collisions.
- Adding hash functions multiplies error.
- Typically fix flow key.
 - Hard to address R1.
- Error is function of (unknown) number of keys.
 - Hard to address R3.
“Map Reduce” for Flexibility

- Language-based design.
- Partitioned across processors.

Pros:
- Unified interface for hardware and software platforms.
- Recent efforts also address **R1**.

Cons:

- Limited types of computations.
 - Simple “count” or “distinct” aggregations so far.
- Limited solutions for traffic dynamics (**R3**).

```
import PacketStream

ddos = PacketStream(1)
  .distinct(keys=('ipv4.dstIP', 'ipv4.srcIP'))
  .map(keys=('ipv4.dstIP'), map_values=('count', ...))
  .reduce(keys=('ipv4.dstIP'), func=('sum',))
  .filter(filter_vals=('count',), func=('geq', 45))

... report destinations that receive from more than 45 distinct sources.
```
Some Recent Examples

• **Automatic DDoS defense:**\(^1\)
 - Library of sketch-based detection and mitigation.
 - Compiled into switch + CPU policy implementation.

• **Automatic flow offloading:**\(^2\)
 - Application of burst-based monitoring.

2. Elixir, NSDI '22.
Research Challenges

• Define the role of traffic monitoring in network automation.
 - What is produced? (Do ML models run in monitor?)\(^1\)
 - How are computations specified? (Regular expressions?)\(^2\)

Research Challenges

• Define the role of traffic monitoring in network automation.
 – What is produced? (Do ML models run in monitor?)\(^1\)
 – How are computations specified? (Regular expressions?)\(^2\)

• Address complex resource management problems.
 – All kinds of dynamics?\(^3\)
 – Contention with other data-plane applications?

Thanks!

(Questions and discussion later...)